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Abstract

The unsteady geometrical 2D governing equation set for the double diffusive convection—a very complicated nonlinear partial differen-
tial equation set with 4 variables—is solved analytically in the cylindrical coordinates. Two special exact solutions describing the convection
in a cylindrical tube and a circular tube respectively are derived with an extraordinary method of separating variables and some other skills.
The solutions are valuable for the development of heat and mass transfer theory. Moreover, as benchmark solutions, they are very useful for
the computational heat and mass transfer to check the accuracy, convergence and effectiveness of various numerical computation methods.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Double diffusive convection widely exists in a variety of
practical applications and natural environment. In theoret-
ical investigations of convection, analytical solutions are
of significance. Many analytical solutions played key roles
in the early development of fluid mechanics as well as the
heat conduction [1,2]. However, the governing equations
of double diffusive convection flow are nonlinear and
coupled. Hence, it is highly difficult to obtain analytical
solutions. To our knowledge, no new explicit analytical solu-
tions of double diffusive convection flow has been reported
except that recently derived by the first author in porous
media [3].

Besides their theoretical meaning, analytical solutions
can also be used to check the accuracy, convergence and
effectiveness of various numerical computation methods
and to improve their differencing schemes, grid generation
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ways and so on. The analytical solutions are, therefore,
very useful even for the newly rapidly developing computa-
tional fluid dynamics and heat transfer. For example,
several analytical solutions which can simulate the 3-D
potential flow in turbomachine cascades were obtained by
Cai et al. [4], and were successfully used to check the com-
putational techniques and computer codes [4–7]. In addi-
tion, we have recently presented some explicit analytical
solutions of unsteady nonlinear flow and heat transfer [8–
21]. In this paper, algebraically explicit analytical solutions
of unsteady double diffusive convection are derived to
develop the theoretical understanding and to serve as the
benchmark solutions for numerical calculations. The deri-
vation procedure is mainly based on the method of separa-
tion variables with addition employed by the authors in
previous researches. This method separates an unknown
function f(x,y) by assuming f = X(x) + Y(y) instead of
f = X(x) Æ Y(y) as done in common methods. By the
way, the derivation procedure includes the trial and
error method with the help of inspiration, experience
and fortune since the governing equation set is very
complicated. However, for a given analytical solution, its
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Nomenclature

C dimensionless solute concentration
C0 constant
Grc solutal Grashof number
Grh thermal Grashof number
Ki different constants
Le Lewis number
N buoyancy ratio N = Grc/Grh

n constant
Pr Prandtl number
Rc function of radius for solute concentration
Rh function of radius for temperature
Rw function of radius for stream function
Rx function of radius for vorticity
r dimensionless radial coordinate

r0 tube radius
Tc function of time for solute concentration
Th function of time for temperature
Tx function of time for vorticity
t dimensionless time coordinate
z dimensionless axial coordinate
Zc function of z for solute concentration
Zh function of z for temperature
Zw function of z for stream function
Zx function of z for vorticity
h dimensionless temperature
w dimensionless stream function
x dimensionless vorticity
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correctness and suitability can be proven easily by substi-
tuting it into the governing equations.

2. Governing equations

The governing axisymmetric equations for the Newto-
nian and laminar binary fluid neglecting heat generation,
viscous dissipation, chemical reaction and thermal radia-
tion can be expressed as [22]
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The velocities are expressed as
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These equations are mathematic 3D partial differential
equation set with four unknown dependent variables x,
w, h and C. According to the knowledge of authors, no
analytical solutions for this equation set have been given
in open journals. In following chapters, two special exact
solutions with evident physical meaning are derived to pro-
mote the development of double diffusive convection.

3. Derivation of explicit exact solutions

Since the main aim is to find possible analytical solu-
tions but not solutions for given initial and boundary con-
ditions, the derivation approach in this paper is different
from the common method. We first find the possible
solutions of Eqs. (1)–(5), and then decide what their initial
and boundary conditions are. Such an approach is similar
to the derivation of typical basic analytical solutions of
incompressible fluid dynamics in early time.

According to the extraordinary method applied by the
authors—the method of separating variables with addition,
the governing equation set is simplified by

x ¼ RxðrÞ þ ZxðzÞ þ T xðtÞ; ð6Þ
w ¼ RwðrÞ þ ZwðzÞ; ð7Þ
h ¼ RhðrÞ þ ZhðzÞ þ T hðtÞ; ð8Þ
C ¼ RcðrÞ þ ZcðzÞ þ T cðtÞ: ð9Þ

Substituting abovementioned four simplified relations
into governing equation set, it is obtained

T 0x þ Z 0wR0x=r � R0wZ 0x=r � ðRx þ Zx þ T xÞZ 0w=r2

¼ R00x þ R0x=r þ Z 00x � ðRx þ Zx þ T xÞ=r

� GrhR0h � GrcR0c; ð10Þ
R00w þ Z 00w � R0w=r ¼ rðT x þ Rx þ ZxÞ; ð11Þ
T 0h þ Z 0wR0h=r � R0wZ 0h=r ¼ ðR00h þ R0h=r þ Z 00hÞ=Pr; ð12Þ
T 0c þ Z 0wR0c=r � R0wZ 0c=r ¼ ðR00c þ R0c=r þ Z 00cÞ=PrLe: ð13Þ

We first separate Eq. (11). It can be rearranged as

T x ¼ R00w=r � R0w=r2 � Rx þ Z 00w=r � Zx: ð11aÞ

Then Tx has to be a constant

T x ¼ K1: ð14Þ
If Zw is a linear function

Zw ¼ K2zþ K3; ð15Þ
then Eq. (11a) can be separated further

K1 þ Zx ¼ K5 ¼ R00w=r � R0w=r2 � Rx: ð16Þ

From Eq. (16), it is derived

Zx ¼ K5 � K1; ð17Þ
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and

R00w � R0w=r ¼ f ðrÞ ¼ ðRx þ K5Þr ð18Þ

where f(r) is an arbitrary function of r.
If f(r) is given, then R0w and Rx can be deduced with com-

mon method as

R0w ¼ r
Z

f ðrÞ
r

dr � 2K6r; ð19Þ

and

Rx ¼ f ðrÞ=r � K5: ð20Þ

Of course, not any f(r) can satisfy the demand of deriv-
ing an explicit analytical solution. It is well-know that the
integration

R
½f ðrÞ=r�dr of any arbitrary f(r) cannot be inte-

grated in an explicit analytical form. In addition, not any
f(r) can satisfy governing equation (10), and it will be illus-
trated with example later.

Now, we separate Eq. (12). Besides abovementioned
assumption, we add following relations to satisfy the
demand of separating variables

T h ¼ K4t; ð21Þ

and

Zh ¼ K7zþ K11: ð22Þ
Substituting Eqs. (15), (21) and (22) into Eq. (12), follow-
ing equation for Rh can be derived

R00h þ ð1� K2PrÞR0h=r ¼ PrðK4 � K7R0w=rÞ: ð23Þ

If R0w is deduced from Eq. (19) with a given f(r), Rh can be
obtained with Eq. (23). As mentioned before, not any R0w
[equivalent to f(r)] can be integrated in Eq. (23).

Now, we have given a preliminary expressions of x, w
and h [Eqs. (6)–(9), (14), (15), (17), and (19)–(23)] satisfying
governing equations (2) and (3) with an undetermined
function f(r).

In order to obtain exact solution, we only consider the
case Le = 1. For such condition, the governing equation
for C—Eq. (4) is totally the same as Eq. (3) for h. Then,
the expression of C will be

C ¼ K0hþ C0; ð24Þ
where K0 is an arbitrary undetermined constant.

Then, solutions satisfying Eqs. (2)–(4) with arbitrary
undetermined function f(r) and constant K0 have been
given. They have to satisfy Eq. (1) also and be able to be
integrated explicitly. It is done by trial and error method.

A simple example is given first. It is assumed that f(r) is a
simplest power function with only one term and its expo-
nential n is an integer

f ðrÞ ¼ nðn� 2ÞK9rn�2: ð25Þ
If assuming K2 = 0 further, it can be deduced from Eq. (19)
that

R0w ¼ nK9rn�1 � 2K6r; ð26Þ
and then derived from Eq. (23) that

Rh ¼ Pr½�K7K9rn=nþ ðK4 þ 2K6K7Þr2=4þ K8 ln r�: ð27Þ
From Eqs. (6)–(9), (14), (15), (17), and (19)–(27), the

expression of x, w, h and C with K2 = 0 satisfying govern-
ing equations (2)–(5) are as follows

x ¼ nðn� 2ÞK9rn�3; ð28Þ
w ¼ K9rn � K6r2 þ K3; ð29Þ
h ¼ Pr½ðK4 þ 2K6K7r2=4Þ � K7K9rn=n�
þ K8 ln r þ K4t þ K7zþ K11; ð30Þ

and

C ¼ K0hþ C0: ð31Þ
These expressions have to satisfy governing equation

(1). Substituting them into Eq. (1), it can be found that
only when n = 4 or 2 and K0 = �Grh/Grc the requirement
is satisfied. So an exact solution for governing equation
set (1)–(5) is found as (The case of n = 2 only is omitted
since it represents a simple solution with constant velocity)

x ¼ 8K9r; ð32Þ
w ¼ K9r4 � K6r2 þ K3; ð33Þ
h ¼ Pr½ðK4 þ 2K6K7Þr2=4� K7K9r4=4�
þ K8 ln r þ K4t þ K7zþ K11; ð34Þ

and

C ¼ �ðGrh=GrcÞhþ C0: ð35Þ
The physical meaning of this solution will be explained

with figures in next paragraph. In brief, it can represent a
double diffusive convection flow in an infinite long cylindri-
cal tube (when K8 = 0).

When

f ðrÞ ¼ 8K9r2 þ K2K10ðK2 þ 2ÞrK2 ; ð36Þ
is assumed, in which K2 5 0, an exact solution can be
derived similarly by more complicated operation with
abovementioned derivation procedure. With the same
assumptions mentioned in Eqs. (6)–(9), (14), (15), (21),
(22), and (24), following solution can be deduced

x ¼ 8K9r þ K2K10ðK2 þ 2ÞrK2�1; ð37Þ
w ¼ K9r4 þ K10rK2þ2 � K6r2 þ K2zþ K3; ð38Þ
h ¼ PrðK4 þ 2K6K7Þr2=½2ð2� K2PrÞ� þ K8rK2Pr=ðK2PrÞ
� K7Pr½K9r4=ð4� K2PrÞ þ K10rK2þ2=ðK2 þ 2� K2PrÞ�
þ K4t þ K7zþ K11 ð39Þ

and

C ¼ �ðGrh=GrcÞhþ C0: ð40Þ

By the way, K2 in this solution is a real number and need
not to be an integer.

The physical description of this solution can be a double
diffusive convection flow in an infinite long circular tube
with porous wall. It will be explained in next paragraph too.



Fig. 2. The temperature distribution of Eq. (34) with K6 = �2, K7 < 0,
K8 = 0, K9 = �1, K11 > �K7(0.75Pr + 1) and z = 1.
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By the way, both previous solutions are mainly expo-
nential functions f(r) and derived with the method of
separating variables with addition. However, when choos-
ing some other function types as f(r) or using common
method of separating variables, explicit solutions with sim-
ple physical meaning and without infinite series or special
function have not been yet able to be derived. Further
research work is needed to find more solutions.

4. Physical description of the first exact solution

Different values of Kis and different relations between
Kis would represent different physical situation.

The explicit analytical solution—Eqs. (32)–(35)—can
represent a double diffusive convection in an infinite long
cylindrical tube when K8 = 0 (otherwise there will be infi-
nite temperature at r = 0). From Eq. (5) and Eq. (33), it
is obtained

ur ¼ 0 ð41Þ
and

uz ¼ �4K9r2 þ 2K6: ð42Þ
It means that there is only z-direction convection flow in

an infinite long cylindrical tube with parabolic axial veloc-
ity distribution. Considering that the velocity on the wall
has to be zero for viscous fluid flow, the tube radius r0

has to be considered that uz ¼ �4K9r2
0 þ 2K6 ¼ 0, i.e.

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K6=2K9

p
: ð43Þ

When K6 = 2 and K9 = 1, the velocity distribution is shown
in Fig. 1.

The temperature is unsteady if K4 5 0 and is a linear
increasing or decreasing function of time for K4 > 0 or
K4 < 0. The axial temperature distribution is linear also,
when K7 is larger or less than zero, the temperature will
be higher or lower along axial direction. The radial temper-
0.0 1.00.80.60.4
r

uz

uz=4

0.20.61.0 0.4 0.20.8

Fig. 1. The velocity distribution of solution (33) with K6 = 2 and K9 = 1.
ature distribution is a little bit more complicated but still
rather simple, for example, for the steady solution (K4 =
0) as well as K6 = �2, K7 < 0, K8 = 0, K9 = �1 and K11 >
�K7(0.75Pr + 1), and the radial temperature distribution
on z = 1 plane is shown in Fig. 2.

The distribution of solute concentration is completely
similar to the distribution of temperature but upside down.
The distribution of vorticity is a linear function of radius. It
means that the flow is not a potential one but there is one
vorticity only on the z = Const. plane.

5. Physical description of the second exact solution

The explicit analytical solution—Eqs. (37)–(40)—with
K2 5 0 can represent a double diffusive convection in an
Fig. 3. The axial velocity distribution of solution (38) with K2 = 1,
K6 = �1.25, K9 = 0.125, K10 = �1.



Fig. 4. The temperature distribution of Eq. (39) with K2 = 1, K4 = 0,
K6 = �1.25, K7 = �1, K8 = 0, K9 = 0.125, K10 = �1, K11 = 7, Pr = 1 and
z = 1.

R. Cai, C. Gou / International Journal of Heat and Mass Transfer 49 (2006) 3997–4002 4001
infinite long circular porous tube. As a simple example, we
choose K2 = 1, then the expressions of radial and axial
velocity are as following

ur ¼ K2=r ð44Þ

and

uz ¼ �ð4K9r2 þ 3K10r � 2K6Þ: ð45Þ

We consider the axial velocity expression first. There are
two radiuses with zero axial velocity

r1;2 ¼ �3K10 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9K2

10 þ 32K6K9

q� �
=ð8K9Þ: ð46Þ

For some values of Ki, for example, when K6 < 0,
K9 > 0, K10 < 0, and 9K2

10 >j 32K6K9 j, there will be two
radiuses r1 and r2 larger than zero, then the inner and outer
radius of the circular tube should be r1 and r2. The radial
distribution of axial velocity is a parabolic curve too, sim-
ilar to previous solution.

However, the radial velocity is a function of radius and
cannot be zero at r = r1 and r = r2 or any r. Then, the wall
of circular tube for this solution should be porous with
media injecting into and ejecting from the tube wall.

The temperature distribution is a little bit more compli-
cated than that of previous solution. However, it is still a
polynomial function.

The axial velocity and temperature distribution along r

are given in Figs. 3 and 4 respectively with K2 = 1, K4 = 0,
K6 = �1.25, K7 = �1, K8 = 0, K9 = 0.125, K10 = �1,
K11 = 7 and Pr = 1.

With different values of Ki, some other flow and thermal
fields can be deduced, for example, more complicated fields
with larger K2 or Ki is not an integer.
6. Summary

Two algebraically explicit analytical solutions for the
double diffusive convection have been derived. The govern-
ing equation set for such convection phenomena is rather
complicated. It is a nonlinear mathematical 3-D equation
set and has not been solved analytically yet. With an
extraordinary method of separating variables—the method
of separating variables with addition as well as with the
help of inspiration, experience and future, we successfully
derive exact solutions for two cases. One is for the double
diffusive convection in an infinite long cylindrical tube. The
other is for the double diffusive convection in an infinite
long circular tube with porous wall. They are meaningful
for the theory of heat and mass transfer. Especially, they
can be benchmark solutions to check various performances
of the codes of computational heat and mass transfer
(CHT) and to improve various CHT methods and skills.
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